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M E T H O D  O F  L O C A L  A P P R O X I M A T I O N S  I N  T H E  N O N L I N E A R  

T H E O R Y  O F  S H E L L S  

S. V. Levyakov and Yu. V. Soinikov UDC 539.3 

The method of local approximations, whose basic concepts are given in [1, 2], is based on the representation of the 

strains of  shells in small regions (elements) by Taylor series expansions. If we confine ourselves to a small element and refer 

its geometry to a certain simple geometrical object, say a plane, the strain relations can be simplified. Depending on the degree 

of local approximation, various nonlinear models of the strains of shells are obtained. Here we investigate the most effective 

finite-element models based on the first terms of  local approximations. 

1. In the neighborhood of a point O the centroidal surface of the shell is defined by the equation 

r = ~ + n P ( ,  ~ = r~ + r,i~i (i = 1,2), (1.I) 

where r is the radius vector of the surface, rP is the radius vector of the plane tangent to the shell surface at the point O, ~" = 

~'(~1, ~2) is a function describing shape of the surface in the neighborhood of the point under consideration, ~z and ~2 are 

orthogonal coordinates on the tangent plane, and a subscript after a con#ma denotes differentiation with respect to the 

corresponding coordinate. Summation over repeated indexes is used everywhere. 

Neglecting small terms ~-,2 < < I, we obtain an expression for the normal vector n to the shell surface 

p 2 ) - 1 / 2  n p r , ~ ( , i  n = ( n ;  - r , ,  ( , i ) ( 1  + ( , ,  "~ - - (1.2) 

According to the Kirchhoff-Love hypothesis on the preservation of a normal element, we write the components of  the strain 

tensor in the form 

= 1. =v r,~V - r . :  r,; ), e# = e,j + z~eq = ~(r,, 

r z =r+zn, r :v =r v+zn v. 
(1.3) 

Here r v and n v are vectors referring to the deformed state, and z is the normal coordinate to the centroidal surface of the 
shell. 

On the basis of relations (1.1)-(1.3) we define the components eij and ~eij for the large displacements and rotations of 

the centroidal surface of the shell by the local approximate relations 

1 v v i pv  v 
s# = eq + :~(C,i (,~ - C .  C. ). e i j= - ( r .  i r ~ - ' ~ i j ) ,  

2 '3 

~ i j  = - - ( C  -- ; ' ) , i j  = --W.j ,  
(1.4) 

where cSij is the Kronecker delta, and w = ~-v _g-is the deflection in the direction of the normal vector nP. 

An analysis of the relations (1.4) shows that the terms appearing in parentheses in the expression for eij vanish with 

diminution of the size of  the shell surface. The retention of these terms permits the approximate strain measures valid for thin 
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TABLE 1 

Simply supported edges (k = 4) 
Grid 

2 x 2  
4 x 4  
8x8  

Model A Model B 

3,00 3,46 
3,55 3,88 
3,88 3,92 

I Two simply supported an, 
two free edges (k = 1) 
Model A Model B 

0,943 1,140 
0,085 1,035 

plates to be accurately extended to strain relations for shallow (small-curvature) shells [3]. The employment of more 

complicated deformation models for the development of  numerical algorithms would be inexpedient both in connection with 

its laborious numerical implementation and from the viewpoint of the main concepts of the finite element method. 

2. We consider a three-node finite element of triangular shape with five degrees of freedom at each node: three 

displacements and two angles of  rotation of  the normal vector. For unknown functions characterizing the geometry of the shell 

element before and after deformation we assume the following approximations: 

r p = Lkrk ,  r pv = Lkr~ ,  ( = _NikOik ,  ( v  = _NikO~k 

(i = 1,2, k = 1,2,3). (2.1) 

Here r k are the nodal values of the radius vector, Oik is the cosine of the angle between the normal vector at the k-th node and 

the coordinate vector r i, and L k and N ik are the area coordinates and cubical shape functions having the form [1] 

Lk = bki~i + bk3, 

bil = ~ 2 j  - -  ~2k bi2 = Elk -- ~lj bi3 = ~ l j ~ 2 k  - -  ~ l k ~ 2 j  
2 F  ' 2 F  ' 2 F  

N l i  = 2F(bk2~li  -- bj2rl2i), N 2i = 2F(bjlrl2 i -- bklr/li), 

~li = L~Li  + c l i L i L j L k ,  rl2i = L~Lk + c21LiLjLk,  

13h~  - h~ + h~ 1 3h~ - h~ + h~ 

= h?  + + ' - 2 + + ' 

(2.2) 

where F is the area of the element, (ij is the i-th coordinate of the j-th node of the element, and h i is the length of the element 

side opposite to the i-th node. The relations (2.2) obey the rule of cyclic permutation of the ices i, j, and k. 

Substituting the expressions (2.1) into (1.4) and averaging the components of the strain tensor within the limits of an 

element, we obtain the strain relations for a shell finite element: 

1 ,~, , t , -v ov O..,,-'GO, e i j =  eli + -~ uij tv,n~v~t - 

1 - 
eij = 

M r  

F 

( i , j , m , s  = 1,2, k , r , t  = 1,2,3) .  

(2.3) 

Here X~r is the k-th coordinate of the r-th node of the element, and 0mr are the nodal values of the variations of the cosines of 

the angles of inclination of  the normal vector (m enumerates the cosines number, and r enumerates the nodes). 

Hereafter the finite-element model based on the strain relations (2.3) will be called model A. Model B implies finite- 
element calculations utilizing the simplified variant of  the strain relations 
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TABLE 2 

Deflection w(0)-10 2, m Deflection w(Tr/2).10 2, m 
Grid 

2 x 2  
3 x 3  
4 x 4  
5 x 5  
6 x 6  
7 x 7  

Model A Model B 

0,2891 0,2865 
0,2990 0,2832 
0,2972 0,2853 
0,2953 0,2864 
0,2929 0,2871 
0,2921 0,2874 

Model A Model B 

0,2752 0,2629 
0,2737 0.2577 
0,2675 0,2565 
0,2638 0,2557 
0,2605 0,2552 
0,2592 0,2548 

/ 

~ ,  ~ ~/~=0,2 
z~.y, ~ A  ~/z---aol 

R ~ = 1  

Fig. 1 Fig. 2 

l ' n l -  
eli =e i i ,  mq = N,i j 0,,~,. (2.4) 

A comparison of  two variants of the deformation models based on the relations (2.3) and (2.4) shows that refinement concerns 

the distribution of  strains within an element and not its spatial motion. Both finite-element variants ensure a calculation of strain 

state of thin shells of arbitrary shape undergoing finite elastic displacements and rotations. It is of interest to study the questions 

of convergence and accuracy of solutions given by models A and B in classical problems of the statics of thin shells. 

3. We use the energy method to solve the problem of determining an equilibrium state. We write the expression for 

the potential energy of a shell element: 

II = -21 f ai:j(Eij~ - aljT)dV 
v 

(otij is the tensor of the coefficients of thermal expansion, ai~ is the stress tensor, and T is the temperature change). 
The thermoelasticity relations have the form 

(3.1) 

a~j = aijkt(z)(e~t - aktT). (3.2) 

Substituting (3.2) into (3.1) and taking into account the Kirchhoff-Love hypotheses e~ = eij + z~eij and the symmetry property 

of the tensor of  elastic constants (aijk/ = aklij), we obtain 

1/ 
II = -~ (Bijkleij~kl + 2CijktEij~okl + Dijkt~ij~ekt ) dF- 

F 

- f Q~js~jdF- f R~j~e~jdF +const. 
F F 

(3.3) 

Here, 
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! 2 

! t i 

o q4 o,~ 

~f 

o,4- 

o,e. 

0 
o,e 

Fig. 3 Fig. 4 

e~j~ = f a~jk~dz; Cijk~ = f a~j~zzdz; Dijkt = f aijklZ2 dz; 
h h h 

O l j = ' f a i j k l O t k l T d z ;  R i j = f a i j k l O ~ k l T z d z  
h h 

(Qij and Rij are the temperature forces and moments). Introducing the strain relations (2.3) into (3.3) and integrating over the 
area of an element, we obtain an expression for the potential energy of an element in matrix notation: 

1 
1I ~ ( r  + 2e~K,00 + 0rK00) - e~Q, - 0TQ0 + const, 

d = Icx~ ,~2=,E~21 ,  0 T = IOx~,o2x,o~,o=2,0~3,o231, 

where Ke, Ke0 , and K 0 are submatrices of the element stiffness matrix, and Qe and Q0 are the heat-input vectors calculated 
from the formulas 

= K .  _- c fN" F, Ko : f IN") 'oN"dF,  
F F 

h h h h 

qo = f(N't)'dF f aaTzdz, a ' =  ]Otll,O~22,0t12[, 
F h 

(3.4) 

alll l  111122 2a1112 

~ a 2 2 2 2  2a2212 

sym ~ 4a1212 

N" = 

N,~ N,~ l N,~ N,~ N,I 3 N,~ 

N,~ N,~ N,~ N,~ 2 N,~ 3 N,~ 3 

Y,t~ N,~ Y,l~ N,~] g ,~  Y,~ 

Here, T is the average temperature change in the element, a is the matrix of elastic constants, and t~ is the vector of coefficients 

of temperature expansion. Integration over the area of an element is carried out numerically by the Gaussian cubature formulas 
[41. 
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6- 

4" 

2- 

0 

= o , z  o P ~ _ ~  

R - / 0  
h a r  

R=e 
~=0o3 

0,4 C~8 ~ w 

Fig. 5 Fig. 6 

In the case of an isotropic shell the components of the matrix a have the form 

al l l l  = a2222 = E/(1  - v2), all22 = val l l t ,  

all12 = a2212 = 0,  a1212 = 0 , S E / ( 1  + v) .  

4. To formulate the equations of equilibrium, stability, and the iterative solution process, the coefficients of the first 

and second variations of  the potential energy of a nonlinear discrete system need to be calculated. 

To obtain a computational algorithm, we introduce two levels of the variable discrete parameters represented by the 

vector of generalized elastic displacements u* and the vector of generalized coordinates u** = q: 

(u*)  T = leT, 0~ I, e "  = le l l ,e22,e121,  
�9 r T "r V V V V 

(~ vj are the angles of rotation of the normal vector n ~J). 

The solving algorithm for the nonlinear problem is based on the stationary conditions for the total potential energy of 

the discrete system: 

H~Sq + g - q = o (4.1) 

(H and g are the Hess matrix and the gradient of the potential energy of the ensemble of  finite elements, Q is the vector of 

generalized external forces). 

The Hess matrix h** and the gradient g** of  a finite element are calculated by the formulas 

* i l l  g'* = (u")Tg ", h ' "  = ( u " ) T h ' u  "' + gi ui , 

where g* and h* are the gradient and the Hess matrix of the first level, and u*' and u*" are the matrices of the first and second 

derivatives of the components of  the vector u* with respect to the components of  the vector u** as defined by the relations 

( g . ) T = , g e r , g ~ , = l # ~  ' . . ,g~,, h . =  [ he he0 ] 
�9 hero h0 ' 

g ~ = K ~ E + K ~ o 0 ,  g a = K , r o e + K o 0 + A g e ,  

h , = K , ,  h ~ o = K , o + K ~ A  "~, 

h0 = Ks + AK~o + KcroA r + A K e A  r + g~Ull + g]U22 + .q~U12, (4.2) 

= l u x x 0 " , u 2 2 0 " , u t 2 0 V l ,  u , j  = 1 / ( N , I N , ~  + N , j N , T ) d F ,  A 

F 
N T INXt, N21, NI2, N22, NI3, N231, ov'r v v 0~31" = = 10~1,021,0~'2, "0~'2, o" 
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pR 2 Tr  

6-  

4 -  

2 -  

1 

' o.:~ ' o : 8 , ~ / ~ '  

Fig. 7 

The integration for uij in (4.2) is carried out numerically by the Gaussian method [4]. The nonzero components of the matrix 

u*' have the form 

Oeij 1 v 
O x ~ ,  n = :~zks(b,#bmi + b,ibraj), 

OO~ v v 

O~v = :ck,~b~,)~ik,, 

O~V - b,n~A'~ v ( i , j , r  = 1,2, 
oz 'L~ 

k , m , s  = 1,2,3)  

(4.3) 

(XVks are the direction cosines of  two auxiliary unit vectors, which together with the normal vector ns v form a right-handed 

triad). 

The nonzero components of the matrices of second derivatives ui*"are calculated from the formulas 

02eij 1 
Ox,~,.,Ox~. t - 2 (bubmi  + bribe7), 

2 v O Or, v ,~v 

2 v 
0 Ors --  bmrAVks ( i , j , l , r  = 1 , 2 ,  
v v k , m , s  = 1,2,3) .  

(4.4) 

The relations (4.3) and (4.4) are used for cyclic calculation of the gradient and the Hess matrix of the potential energy of a 

shell finite element, making it possible to obtain a compact computational algorithm. 

In the process of the iterative solution of the equilibrium equations according to the scheme (4. I) it is necessary to 

calculate new values of the unknown quantities after each iteration. In the case of  finite displacements and rotations the new 

values of the nodal unknowns are calculated from the formulas 

r vv = r v + ~r v, n vv = n v cos <Sn v + 6n v s in(~SnV)/6n v ,  

where an v is the magnitude of the vector 6n v.  

The algorithm formulated above enables one to determine the equilibrium states and to investigate their stability in 

accordance with the criterion of  positive definiteness of the second energy variation. 

5. We now consider the stability problem for a simply supported square plate with the side b compressed uniaxially 

by forces p. We assume that v --- 0. With symmetry conditions taken into account we obtain analytical expressions for the 
stability equations for one quarter of the plate divided into two triangular elements 
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K q  - p b 2 D - l ( B  + C)q  = O, qT = 12w/l,,~l, (5.1) 

where w is the bending deflection at the center of the plate, ~o is the angle of rotation of the normal vector and D is the flexural 

stiffness. The nonzero components of the matrices in (5.1) have the form 

K u = 8 4 ,  K12=K21=38, K22 =29, Bl1= 1, 
C11 = 3/20, C,2 = C'21 = 1/15, 6'22 = 73/720. 

The matrix C reflects the influence of the additional terms in the strain relations (1.4) characterizing model A. From the 

condition det(K - -  pb2D-l(B + C)) = 0 we obtain the critical load parameter k = peb2/a'2D, the exact value of  which is 1% 

= 4 [5]: 

k = 3237r 2k192 1'276 - 1~)102287 = 3,00 (model A), 

992 
k = ~ = 3,46 (model B) 

(Pc is the critical load). 
Setting ,p = 0 in (5.1), one can also find a solution of the problem for a plate with clamped edges. In this case the 

following values for the critical load parameter are obtained (1% = 10.07 [5]). 

1680 
k = - - =  7,40 (model A), 

23r ~ 

84 
k = ~-~ = 8,51 (model B). 

The results indicate that the error corresponding to a coarse discretization grid is equal to 25% and 15% for models 

A and B, respectively. 
Table 1 shows the results of a computer analysis of the convergence of the finite-element solutions carried out on a 

computer. The analysis of the results demonstrates the advantages of model A in the case of two simply supported and two free 

edges. For example, for a 2 • 2 grid the error of the critical parameter is 5.7% and 14% for models A and B, respectively. 

The linear solution has been analyzed for a cylindrical shell with free edges loaded with two point forces P = 453.6 

N characterized by the parameters L = 0.2629 m, R = 0.1258 m, h = 0.2387.10-2 m, E = 0.738-105 MPa, and v = 0.3125 

(Fig. 1). Owing to symmetry properties, discretization for one-eighth of the shell is sufficient. The results of  the investigation 

of convergence in determining the deflections are listed in Table 2. For comparison we give values obtained in different papers 

for the deflection w(0) at the point of application of the force: 0.276-10 -2 m [6], 0.287.10 -2 m [7], 0.279.10 -2  m [8], and 

2886-10 -2  m [9]. An analysis of the results of the calculations shows that both models converge, model A giving an upper 

bound of the solution, and model B a lower bound. 

The nonlinear algorithm has been used to solve the problem of bending of  a thin cantilevered strip loaded by a 

transverse force P and bending moment M. The parameters of the plate and the finite-element grid are given in Fig. 2. The 

equilibrium states of  the strip for P = 7r and F' = 27r (P = PI2/EI, I = bh3/12) are also presented here. 

Figure 3 shows nonlinear characteristic curves relating the load parameter P to the displacement Q = u/l (curve 1) and 

deflection qr = w/ l  (curve 2) of the free end (the curves represent solutions obtained by a beam scheme [10], and the light and 

dark circles represent the finite-element solutions for models A and B, respectively). Both models give the results that coincide 

practically with the beam solutions. 

The equilibrium configurations of the strip for various values of the bending moment parameter 1VI = M//EI are 

presented in Fig. 4. Figure 5 shows characteristic curves of the displacement ~ and deflection qr (curves i and 2) corresponding 

to the solution. Here, in accordance with the notation adopted above, we show the values calculated by means of the finite- 
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element models under consideration. For small values of the load parameter (19I < 1) all three solutions are close to one 

another. When the load increases (I91 > 1), the shell models become stiffer than a beam. 

The nonlinear deformation of shells has been investigated by the above-described method expounded above in the 
problem of bending of a narrow ring loaded by two diametrically directed point forces P. The grid and geometrical parameters 

of the shell are given in Fig. 6. 

In Fig. 7 curves 1 and 2 represent the nonlinear characteristics of the deflections of points M and N obtained on the 

basis of the beam scheme. The dots represent the solution corresponding to the finite-element model A, and the crosses 
correspond to model B. In this problem better agreement with the beam solution (solid curves) is observed for model A. 

An analysis of the results of the calculations shows that the development of an optimal finite-element model depends 

first of all on the extent to which the nonlinear external connections of the finite elements are reflected, and to which standard 

convergence criteria [2] are satisfied. This question is intimately related to the choice of generalized elastic displacements in 

nonlinear problems reflecting the three-dimensional character of actual geometrical relations existing in the shell, and also to 

the description of large displacements of such a geometrical object. The more accurate approximation of the strain distribution 

within an element is not as decisive to the achievement of a more accurate solution as the diminution of element size. It should 

be noted that the use of the finite-element model A in calculations leads to large expenditures of time. For example, the time 

required to solve the problem of bending of a cantilevered strip subjected to a force P varying from P = 0 to P = 2a- in 10 

loading steps using model A is about twice the time required for model B. 
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